Use sua conta do Face.
Google, Gmail, Youtube, etc.
Dada a função [m] f(x) = 7x + 21 [/m] encontre:
a) [m] f(0) [/m]
b) [m] f(4) [/m]
c) [m] f(-8) [/m]
Seja [m] f: \mathbb{R} \rightarrow \mathbb{R} [/m], uma função tal que [m] f(x) + 3 \cdot f(8 -x) = x [/m], determine [m] f(2) [/m].
Os gráficos acima representam as funções de custo total [m] C(x) [/m] e receita [m] R(x) [/m] de uma confecção que produz camisetas. Eles mostram que o valor da receita é igual ao do custo quando é vendido exatamente [m] 350 [/m] camisetas.
Com estas informações, encontre o lucro obtido na venda de [m] 10.000 [/m] camisetas.
Sejam os conjuntos [m] A = \{ 2, 4, 6\} [/m] e [m] B = \{ -2, 4, 8, 10, 18, 22\} [/m], qual das afirmativas a seguir é verdadeira?
a) [m] f(x) = 2x [/m] é uma função de A em B.
b) [m] f(x) = x -12 [/m] é uma função de B em A.
c) [m] f(x) = x^2 + 6 [/m] é uma função de A em B.
d) [m] f(x) = x^2 -3x [/m] é uma função de A em B.
Encontre o valor de [m] f(5) + 2 \cdot f(-2) [/m], sendo que [m] f(x) = \frac{3x}{8} + \frac{2}{5} [/m].
Dada a função [m] f(x) = \frac{-2x -5}{3} [/m] encontre o valor de [m] f(47) [/m].
Sejam [m] f, g [/m] e [m] h [/m] funções afins tais que [m] f(x) = 2x + 6 [/m] e [m] g(x) = -3x + 11[/m]. Determine a lei que define a função [m] h [/m], sabendo que o gráfico de [m] h [/m] passa pelo ponto de interseção dos gráficos de [m] f [/m] com [m] g [/m] e que [m] h(-2) = -1 [/m].
Qual é o valor de [m] f(13) + f(-5) -f(8) [/m] , sendo que a função [m] f [/m] é igual a:
[mm] f(x) = \begin{cases}
\frac{6}{x-1}, & se \ x<3 \\
4x + 1, & se \ x \geq 3
\end{cases} [/mm]
Jhonathan | atividade de fixação |